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ABSTRACT

The cost of system operational testing is steadily

increasing. It is desirable for the software manager to know

if the software is sufficiently well developed or reliable to

support such testing. Current software reliability models

provide only point estimates of the mean time to next failure

or expected number of errors to occur in additional testing

time.

The goal of this thesis is to take into account prediction

uncertainties of a software reliability model. Bootstrapping

is used to provide the software manager with confidence limits

of the predicted expected number of faults to occur for

additional testing time. The results can be particularly

useful to a software manager who has to answer a subjective

question: is the software reliable enough to support system

operational testing? A range of predicted expected number of

faults will be of more use to a software manager, who has to

justify the answer to this question, than just a point

estimate. Two software fault data sets are analyzed with this

technique emphasizing how a software manager should analyze

the results. Acoession For
NTIS GRA&I

.1auo DTIC TAB 0
Unanounced 0\.,,e / Jutification

iii Distribut!on

Availability Codes

Avallansior
Det Speoli



TABLE OF CONTMITS

I. INTRODUCTION ................... 1

I. SURVEY OF SOFTWARE RELIABILITY METHODOLOGIES 7

A. TIME BETWEEN ERRORS (TEE)............7

1. Jelinski and Moranda Model. ........... 8

2. Schick-Wolverton Model. ............. 9

3. Geometric Model................11

4. Use of Time Between Errors (TEE) Models .. 13

B. FAULT COUNT MODELS................14

1. Generalized Poisson Model............14

2. Non-homogeneous Poisson Process Model . .. 16

3. Schneidewind's Software Reliability Model 17

4. Use of Fault Count Models............21

C. SOFTWARE RELIABILITY MODELS .............21

III. DATA ANALYSIS. ................... 24

A. MODEL DEVELOPMENT ................. 24

B. BOOTSTRAP. .................... 28

C. RESULTS.......................29

D. USE OF'RESULTS..................30

E. APPLICATION TO TWO DATA SETS............31

iv



IV. CONCLUSION......................43

APPENDIX.........................46

REFERENCES........................59

BIBLIOGRAPHY........................61

INITIAL DISTRIBUTION LIST.................63



ACDJOWLDGUEITS

I owe a significant amount of gratitude to my advisor,

Professor Donald P. Gaver. His guidance and encouragement

were paramount in the completion of this research. He

broadened my horizons, not only in statistical methods but

also in how to communicate ideas. It would have been very

difficult to complete this research without his advise and

expertise.

I am also grateful to my second reader, Professor Timothy

J. Shimeall for his willingness to evaluate this research.

Finally, but by no means less important, I am deeply

indebted to my wife, Janice, who at the same that this

research was being conducted endured a difficult pregnancy,

compensated for my slack in parental duties during the many

days I spent away from home, and managed a career job of her

own. There is absolutely no possible way I could have

completed this research without her encouragement and

uncompromising, loving support. She is a true blessing. To

my children , Jennifer, Sean, and Ryan, I thank you for your

smiling, cheery faces that lifted my spirits after many days

away from home.

vi



I. INTRODUCTION

Prior to costly operational testing of a system consisting

of hardware and its embedded software, it would be highly

desirable to know whether these two major components are

sufficiently reliable to support such testing. Specifically,

this is equivalent to asking whether the software has reached

a state of maturity such that unforeseen faults (bugs, errors,

system crashes, etc.) are not likely to occur during

operational test of the entire system, or later, during a

systemic mission.

Estimation of hardware reliability is relatively well-

understood. Unfortunately, software reliability or maturity

prediction is not as well understood at this time. The

ANSI/IEEE definition of software reliability is the ability of

a program to perform a required function under stated

conditions for a stated period of time (IEEE, 1984). Since

testing software has an associated cost whether it is in

computer run time, labor costs, lost market share resulting

from late delivery of a product or, in the case of military

equipment, sacrificed range-testing time and aborted missions,

there is a finite time allocated for testing and removal of

faults (bugs). A moderate-sized program with 264 branches

would have 21 independent paths (greater than the estimated

number of atoms in the universe). Obviously, it is infeasible
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to test each path (Dalal and Mallows, 1988). Testing and

debugging costs are estimated to range from 50% to 80% of the

costs for development of a working version of software

(Beizer, 1984). The constraints of a finite time period for

testing and the cost of testing are excellent incentives for

prompt and accurate determination of software reliability.

Put in the form of a question: when can testing be stopped

and the product delivered with a high level of confidence that

the customer will be satisfied?

Software reliability estimation is based on the results of

testing. Software testing can be broken down into four major

categories: unit, integration, system and regression testing.

Unit testing is usually done by the programmer in an informal

manner. Integration testing is done in an orderly progression

such that the software elements are combined and tested until

the entire software package has been tested. System testing

is integration of hardware and software to verify that the

system meets specified requirements. Regression testing is

retesting to detect faults that may have been introduced

during program modification (Hernandez, 1989). One purpose of

testing is to produce quantitative measures of software error-

proneness after effort has been expended in the integration

testing, system testing, and fault removal phases.

Software testing, a follow-on to hardware reliability

prediction has been of considerable importance and interest

from the mid-1960's to the present. The Navy's Operational
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Test and Evaluation Force recently (January, 1992) held a

symposium for DoD agencies to discuss and exchange ideas and

methodologies on software testing and reliability. There are

two basic differences between hardware and software

reliability predictions. Hardware prediction usually assumes

independence of failures, and, after some point, the

reliability measuring process does not affect the failure

rate. Software reliability prediction models should assume

interdependence of unit failures, and that testing improves

reliability. Removing a program fault or bug during

developmental testing reduces the likelihood that a fault will

become operative later in an operational setting that will

cause a mission to abort. The software fault-prevalence and

appearance prediction problem has been judged to be inherently

more difficult than hardware reliability prediction (Beizer,

1984).

There are several software reliability models that will be

discussed later. Beizer in his seminal work Software System

Testing and Quality Assurance (Beizer, 1984) summed up the

similarities of the models best.

1. Most models assume a fixed but unknown number of
faults when testing.

2. Faults are universally assumed to be independent (some
of the later models, Schneidewind's Software Reliability
Model for example, do not necessarily make this
assumption).

3. Most models assume perfect debugging. That is, the
debugging process introduces no new faults. However, some
of the later models take into account that not all

3



detected faults will be fixed, and that the debugging
process itself may introduce new faults (Littlewood and
Verrall 's Bayesian Reliability Growth Model takes into
account imperfect debugging).

4. Most models assume that test time and calendar Lime
are the same.

5. The models assume that failure rate is proportional to
the faults remaining. This implicitly means that faults
are assumed to cause single failures and each failure can
be related to one failure.

6. The models assume path homogeneity. That is, data are
entered randomly and such data uniformly exercise all
code. This is in direct contradiction to the reality that
the most paths cover a small percentage (say under 10%) of
the code.

The difference between t'ie models lies in the degree with

which these assumptions hold true, i.e. the type of random

process according to which the failures occur, and how data is

fitted to the models (Beizer, 1984).

The models that are described in Chapter II do not

necessarily perform well for all types of data. There is no

"silver bullet" (Brooks, 1986) that will take on all comers

successfully. One model may predict reliability well for one

data source but not another. The users of the models must

take into consideration the predictive quality of a model

prior to basing decisions on the output of the model (Abdalla

et al, 1986) and (Goel, 1985). One possible way to do this is

to analyze the data using various models. The manager selects

the model that demonstrates the best predictive qualities,

i.e. the model that appears to best fit the data and provide

4



useful results. The choice is difficult because it is

conducted in an atmosphere of uncertainty.

Our hypothesis is that software reliability can be

predicted, but with error. It is important to take account of

the variabilities and uncertainties that are inevitably

present, at least those associated with sampling (finite

data), the most serious errors may be associated with model

choice, however. To test this hypothesis of predictability we

analyze sources of fault (error or bug) data using a

modification of the BELLCORE MODEL (Dalal and Mallows, 1988)

to estimate the reliability of the particular software project

and the quality of the prediction produced by the model.

Parametric estimates are made by maximum likelihood but also

by use of an approximate Bayesian technique. Error estimates

are made by a re-sampling technique known as bootstrapping.

The parametric bootstrap technique was used in the

aftermath of the Challenger disaster to analyze the O-rings

that failed. Although the analysis was done on hardware the

methodology that we propose in Chapter III and the appendix is

similar. The analysis of the O-rings showed the bootstrap 90%

confidence limits expected catastrophic failure rate of at

least 13% at temperature of less than 31 degrees, but less

than a 2% failure rate at temperatures above 60 degrees (Dalal

et al, 1989). Had the NASA decision makers had this

information available to them the consideration to postpone

the launch may have been taken more seriously and the disaster
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prevented. The analogy for the software manager to consider

is the predicted number of faults to occur for some specified

time acceptable. It is hoped that, the wrong decision will

not have consequences as severe as the Challenger disaster.

The techniques that we describe provide a quantitative tool

for the software manager to substantiate the decision to

schedule (postpone) system operational testing.

In Chapter II, we briefly describe several software

reliability prediction models that have been proposed in order

to provide a basis of understanding of the discussion. In

Chapter III and the appendix, we present the model fitting

procedure, the method used to determine the quality of the

prediction, the resulting data obtained from the analysis, and

methods to improve this methodology from the perspective of a

software manager. In Chapter IV, our conclusions are provided

and directions for future research are suggested.

6



II. SURVEY OF SOFTWARE RELIABILITY METHODOLOGIES

This survey is concerned with only two categories of

software reliability models: those for time between errors

(TBE), and for fault count (number of errors in a specified

time).

A. TIME BETWEEN ERRORS (TBE)

TBE reliability assessments attempt to predict the mean

time between failure (MTBF) of the ith failure based on that

to the (i-l)th failure. The TBE can be measured in either

central processing unit (CPU) time or wall-clock time. Wall-

clock time can be misleading: it can elapse regardless of

whether or not the program is running. From this information

the software manager can gain confidence that the software

will exhibit the operational capability to complete its

mission: to operate without failure for a mission time. A

system that experiences multiple, severe software errors thirAt

prevent the system from completing its operational mission is

not ready for costly live exercises as in operational testing.

For example, a system that is supposed to detect, track and

engage a missile during a scenario of five minutes' duration,

but whose software experiences a severe fault every thirty

seconds on average, is obviously not ready to conduct an

expensive live exercise or actual mission. Here are some
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models that attempt to predict (mean or average) time to

failure.

1. Jelinski and Moranda Model

Jelinski and Moranda developed the "De-Eutrophication

Model" (Moranda and Jelinski, 1972), (Farr, 1983). The

assumptions are:

" The rate of fault detection is proportional to the current
fault content of a program.

* All faults are equally likely to occur and are independent
of each other.

* Each fault is of the same severity as any other fault.

* The fault rate remains constant over the interval between
fault occurrences.

* The software is operated in a manner similar tc
anticipated operational usage.

" The faults are corrected instantly, without introduction
of new faults into the program.

The hazard rate for the ith fault is

Zj ( t ) =O[N - ( i - 1) ]  (2.1)

where: N = total number of faults initially in the system

i = ith fault to occur

e = proportionality constant.

= t- ti1 is the time between the ith and the (i-l)st fault

and is assumed to have an exponential distribution with rate

Zi(t i)

f (x., ) -e [N - ( i - 1) 1 e ( - N (2.2)
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The likelihood function for the parameters 6 and N is

L(X I ,...,X n )=f1.1[N-(i-l)]e-(N'i-)XI] (2.3)

Taking the partial derivatives of ln(L) with respect to N (N

is allowed to assume any real value as a convenient

approximation) and e, and then setting the equations equal to

zero, the solutions for the following set of equations are

obtained as maximum likelihood estimates for N and e (N is

estimated by numerical techniques, then used to solve for e):

En (2.4)

1 _ n

E 

2 .2n

The estimate for the mean time between failure (MTBF) for the

(i+l)st fault occurrence is

MT F ji= Z( ti)  - (2.6)

The data required to use the Jelinski-Moranda model are the

observed times of the fault occurrence (ti's), or the times

between the faults (x's).

2. Schick-Wolverton Model

The hazard rate for the Schick-Wolverton model

(Schick and Wolverton, 1978) and (Farr, 1983) is proportional

9
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to the number of faults in the program and the amount of

testing time. An assumption of the model is that as more

testing is completed the probability of detecting faults

increases because of "zeroing-in" on the areas of code where

the errors lie. The assumptions are:

" The rate of fault detection is proportional to the current
fault content and to the amount of time expended in
testing.

* All faults are equally likely to occur

* All faults are independent of each other

* All faults are of the same severity

" The software is operated in a manner similar to the
anticipated operational usage

* Perfect fault correction occurs.

The hazard function is

Z(X i ) =e [N- (i-1) 1X , (2.7)

where: X the amount of time spent testing between the

occurrence of the ith and the (i-1)st fault

N = total number of faults initially in the program

6 = proportionality constant.

The reliability function of X is

R (X. ) =e x p ( - 0 [N - ( i - 1 ) ] ) 2 (2.8)

10



The density function of X is

(-0[N-(I-)] -) (2.9)
f(X 1 ) =-R'(Xi ) =e [N-(i-i) ]Xe 2(

If X42/2 is replaced by Y the model is formally identical to

the Jelinski-Moranda model previously described. In fact,

substitution of any known function of X, allows transformation

to the Jelinski-Moranda model. N and e are estimated by

MLE'8: 2n

En
0= 2 (2.10)

1 X-- (2.11)

The estimate for the mean time between failure (MTBF) for the

(i+l)st occurrence is

MTBFi. = 1 (2.12)

The data requirements are the time of the fault occurrence, ti,

or the time between the ith and (i-l)st fault.

3. Geometric Model

The Geometric model (Moranda, 1975) and (Farr, 1983)

is a modification of the Jelinski-Moranda "De-Eutrophication"

model. It differs from that model as follows: it does not

assume a fixed number of faults in the program, and the faults

are not equally likely to occur because as debugging

11



progresses faults become harder to detect. The assumptions

are:

* There is an infinite number of total faults (the program

is never totally fault free).

* All faults do not have the same chance of detection.

* Detections of faults are independent.

* The software is operated in a manner similar to
anticipated operational usage.

* The fault detection rate forms a geometric progression and
is constant between faults.

The hazard rate for the ith fault is

Zi( t) =D i-1 , (2.13)

where: tj = time between the ith and the (i-l)th fault

D = initial hazard rate

8 = fault detection rate (0<8<1)

n = the nth fault to occur.

Xi = time between the ith and the (i-l)st fault. The Xi are

independently and exponentially distributed with rate Zi(t),

so the density function of Xi is

f(Xi ) =DOi '-D - 1 ) (2.14)

D and e are estimated by MLE's:

Dixn (2.15)
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j1 l - n * (2.16)

Equation (2.16) is solved for 6, and that value is substituted

into (2.15) to find b. From these equations the MTBF until

the (n+l)st fault occurs after n faults have occurred can be

obtained:

M'= F1+1=2(X" 3) (2.17)

The data requirements are the time of the ith fault (ti), or

the time between the faults (X.), for i = 1,2,...,n.

4. Use of Time Between Errors (TBE) Models

The TBE for models in this category can be measured in

either wall-clock time or CPU time. The models may be used to

predict the expected time to the next failure. Confidence

limits on the expected value should be used to obtain a range

of time to the next failure. The software manager should be

asking: is the expected time of next time of failure longer

than the time required for operational testing of the software

within the overall system? If the time required for

operational testing of the system is greater than the mean

time to failure for the (i+l)th failure then the prudent

software manager should consider postponing operational

13



testing in favor of continued developmental activity and

testing.

B. FAULT COUNT MODELS

Fault count models use the number of faults that occurred

in a testing interval to determine the expected number of

faults in the next testing interval. Software managers can

employ this method by simply counting the number of faults in

a given test period i.e. day, week, or month, provided test

exposures are the same. This provides insight into how well

the testing process is working.

1. Generalized Poisson Model

The Generalized Poisson Model (Schafer et al, 1979),

(Farr, 1983) is similar to the Jelinski-Moranda and Schick-

Wolverton models but uses fault count observations in fixed,

equal-length intervals rather than times between faults. The

assumptions are:

" The expected number of faults occurring in any time
interval is proportional to the fault content (number of
bugs remaining) at the time of testing, and to the amount
of time that has been previously spent in testing. The
actual number of faults that appear is assumed to be
Poisson distributed.

* All faults are equally likely to occur and are independent
of each other.

* Each fault is of the same severity.

* The software is operated in a manner similar to the
anticipated operational usage.

14



* The faults are corrected at the ends of the testing
intervals. (Note: Faults discovered in one test interval
may be corrected at another test interval; the only
restriction is that the fault correction come at the end
of the testing intervals.)

Testing intervals are of length x, and fi faults occur during

the ith interval. At the end of the ith interval a total of

K. faults are corrected.

The expected number of faults in the ith interval is

E(f1 ) =e [N-M.1 ] g (x,x 2,..., x) , (2.18)

where: 8 = proportionality constant

N = initial number of faults

gi = function of the amount of testing time spent

previously and currently and is nondecreasing;

as testing progresses more faults are found

specifically,

9i(XiIX21 ...,IXi) =Xi ,(2.19)

where a is assumed known.

fi is Poisson with mean = e(N-M I)gi. N and 8 are estimated by

MLE' s:
= fi, (3.20)

En fi

5(2.21)
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These non-linear equations must be solved for 6 and k. From

this the expected number of errors in the (n+l)st test

interval can be obtained,

A(fn. 1 ) =g(.-M)gn 1 (X1 , • • xn , (2.22)

where: x,+, is the anticipated testing time for the (n+1)st

test interval.

The data requirements for this model are the lengths of the

test intervals, (x,), the total number of faults corrected at

the end of a test interval, (K), and the number of faults

discovered in each interval (fi).

2. Non-homogeneous Poisson Process Model

The Non-homogeneous Poisson Process Model (NHPP) (Goel and

Okumoto, 1979) and (Farr, 1983) assumes that the fault counts

for testing intervals follows a Poisson distribution. The

expected number of faults in the Poisson process model is

proportional to the number of faults left in the program. The

assumptions are:

" The software is operated in a manner similar to the
anticipated operational usage.

* The numbers of faults detected, (f,), in the any test
interval, (ti-1,ti), are independent for any finite
collection of times t ,<tV,...,ti,...,tit .

* Faults are of the same severity.

* Faults are equally likely to be detected.

* The cumulative number of faults detected at any time t,
(N(t)), is a Poisson distribution with mean m(t). The
mean, m(t), is the expected number of faults to occur for

16



any time period (O,t) and is proportional to the expected
number of undetected faults at time t.

m m(t) is bounded.

The specific mean function used is

m(t)=a(1-e - bt) , (2.23)

and fi is the number of faults in the ith interval,

f 1 =N(t 1 )-N(t i 1 ) , (2.24)

where: a = expected total number of faults to be

eventually detected.

a and b can be estimated by MLE's:

fi (2.25)
(1-e-st.) '

tie- . f. fi (t i e-'-te 1 e

(1-e "-s ) e eti. le s (2.26)

From the estimates of a and b the expected number of faults in

the next (m+l)st test interval is estimated to be

t t2.27)

The data required for this model are the fault counts of each

test interval, (f,) and time of the test interval, (ti).

3. Schneidewind's Software Reliability Model

Schneidewind's model (Schneidewind, 1975) and (Farr,

1983) maintain that as testing progresses the fault detection

17



process changes. The later faults are therefore more useful

in determining future fault counts. The model allows for

three approaches.

1. Utilize all the fault counts from the m intervals.

2. The first (s-1) intervals are ignored and only the s
through m interval fault counts are considered.

3. The first (s-1) intervals fault counts are summed, and
the individual fault count from the remaining s through
m intervals are treated individually. Denote the sum of
the fault counts in the first s-i intervals by:

F~y~' 1t'j .(2.28)

Method 1 is used when the analyst feels that all intervals

will be useful. Method 2 can be used when a significant

change in the fault detection process has occurred at

approximately the (s-l)st interval. Method 3 attempts to

combine the effects of both approaches. The assumptions for

all methods are the same:

" The fault counts for each interval are independent of each
other.

* The fault correction rate is proportional to the number of
faults to be corrected.

" The software is operated in a manner similar to the
anticipated operational usage.

* The mean number of detected faults decreases from one
interval to the next.

" Intervals are all of the same length.

18



0 The rate of fault detection is proportional to the number
of faults remaining. The fault detection process is
assumed to be a non-homogeneous Poisson process with an
exponentially decreasing appearance and detection rate.

The rate of change of the number of faults detected in the ith

interval is

di=ae (-P1) (2.29)

The cumulative mean number of faults that occurs up to and

including interval i is

Di=A (1-e - p i ) (2.30)

The mean number of faults for the ith interval is

m1 =D1 -D_ 1=j (e (-P(ji1)) -e (-)) (2.31)

a and $ can be determined by MLE's:

P=ln(y) , (2.32)

E ___ (2.33)
1 -e-Oin

For Method 1, y is the solution to:

F3  mF _ A (2.34)

y-1 y m- 1

where:

19



-A/-0 (s+i-1) f= 1 ,(2.35)

Fm-7i (2.36)

For Method 2, y is the solution to

Aym-s 2 - (A+F,.) ym-' 1+ ((m-s+l) Faom-A) y+ (A+F.m - (m-s+l) F.m) =0

(2.37)

where:

A=j-.0i f , (2.38)

F, = a, , f, (2.39)

T -, fi) (2.40)
I -e - P

For Method 3, y is the solution to

(s-1) FS_ + F , m_ Fm =A (2.41)

yS-1-I y-1 ym-I

where: A is the same as Method 1 and F,, is the same as Method

2. From the MLE's of & and the expected number of faults in

the (m+l)st interval is
A(f 1 ) - (ei~e-i1)) (2.42)
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The time needed to detect a total number of M faults is

log( )
(2.43)

The data needed for this model are the fault counts for each

interval and a history of testing process in order to

determine the interval that testing procedures may have

altered significantly.

4. Use of Fault Count Models

Fault count models use the number of faults that occur

in some testing interval. The models in this category predict

the expected number of faults to occur in some additional time

interval. Confidence limits on the expected number should be

used to obtain a range of the predicted number of faults to

occur for that time interval. Since there can never be a one

hundred percent guarantee of perfect software, the software

manager should be asking: is the predicted number of faults

to occur for the time interval of interest acceptable for

operational testing? If the predicted number of faults to

occur is too great then the prudent software manager should

postpone operational testing in favor of continued

developmental activity and testing.

C. SOFTWARE RELIABILITY MODELS

The number of software reliability models continues to

grow. Assumptions have broadened to reflect the reality of
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the software development process with increased accuracy. The

assumptions of some models described appear to be limiting.

Faults all of the same severity can be worked around by

modeling faults according to severity. The assumption that

all faults are equally likely to occur and independent of each

other can be resolved by assuming low severity faults occur

more frequently than high severity faults, but faults of the

same severity class will be considered equally likely to

occur. Instantaneous fault correction can be avoided by not

counting faults which were previously detected (and counted at

time of initial detection), but were not corrected (Farr,

1983).

Software managers need to be aware of the limitations and

underling assumptions that underlie the various models that

are available. The data that is needed to fit the models is

critical to reliable results. The data collection needs to be

an accurate reflection of the meaningful historical testing of

the software. Some of the data that should be collected is

computer usage time, testing intensity, extent of the software

that was tested (was the entire system tested or just a

particular module), and milestones in the software's

development (are requirements changed or added midway through

the development of the software?) and, of course, the cost of

testing.

This study illustrates the use of a particular reliability

model. Some of the specific questions that this thesis
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addresses are: How is a software reliability model used?

What type of information does a model require? What kind of

decision can a software manager make based on the results of

the reliability model?

In today's fiscal environment software managers should

have a "warm fuzzy feeling" substantiated by quantitative

results for their product prior to initiating costly full

scale, live operational testing.
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111. DATA ANALYSIS

A. MODEL DVELOP)CNT

The model that is applied in this thesis is based on the

assumption that the rate of error occurrence is a non-

stationary Poisson process (NSPP) (Dalal and Mallows, 1988).

The model is identical to the Schneidewind model, and is

fitted according to Method 1, which assumes that all fault

data is of equal value. Let N(t) be the number of faults that

occur in (O,t); where t is software running time. The

probability that the number of faults to occur by time t is

given by:

P{N(t) =n}- -fl ((X(t))" (3.1)n!

where X(t)=X(1 -e-). A test time, t,, was chosen. This length

of time is divided into periods of length A = t,/J; where J is

the total number of intervals. The jth interval is such that

(j-1)A<t<jA. The number of observed counts (faults) in the

jth interval is r. The probability distribution for the

number of faults in [(j-l)A to jA] is

P{NjN(jA) -N( (j-I) A) =flj} =e n1 (3.2)
2j! ,
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where 'Xi =E[N ] =1 (I-e - PJA) -)( -e i 1)A) , (3.2a)

=,Xe-P(j-1)A(I-e-PA) .(3.2b)

The parameters A and X are estimated by maximum likelihood.

The likelihood function is

ffi.1 nj !

The natural log of L(X,A) is

The partial derivatives of 1(X,A) with respect to X and A are

taken and set equal to zero. This allows X to be written in

terms of A and n(t,), the total number of counts to occur up

to time t, as n (35)

( 1 -e-po

X is substituted into the partial derivative of 1 with respect

to A to give,

tse-ea n ( t,) Ae - PA
,IAap-nt8 ) i"(ts) + =0 (3.6)l-e- e" l-e-PA'"

where-wh e e-t ) ) n . (3 .7 )

can now be solved for from the following equation:
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_Ae-__ tSe - " _ t )  (3.8)1-e-PA 1-e-Pt" n (t s )

This equation closely resembles Schneidewind's result; see

(2.41). Since t,=AJ, equation (3.8) becomes

e -PA -Je Pt" -n(t)(3.9)
1-e-PA 1-e-i" n(t s)

then, te eA (e-A)J + )(ts) (
=j _____ __ __=r (3.10)

1-e-pA 1- (e -IA) J nED

By letting x=e A into equation (3.10) becomes,

X-JL x J +nH(t'__)=; (3.11)

1-x i-xJ n(t)

x is solved for iteratively. Let J=0 for the first iteration,

then

x(1) (t)(3.12)T-x(I) n ( t)"

x1() n() (3.13)

n(t 8n) - r(1)

r(2) is

(2)=r(1)+J x()J (3.14)I-X(1) J

x(2) is given by,
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x(2) r(2) (3.15)
1+r (2)

Hence the iteration of r(n) and x(n) is

r(n+1)=r(n)+J X(n)7 (3.16)
1-X(n)7 '

x(n+l) = r (n+l) (3.17)

1+r(n+l) (

The iterative process continues until x(n+l)-x(n) < E, where

e is a suitable small number; x(n+l) is then substituted into

equation (3.5) to get i. Using the estimates of A and i, the

expected number of faults to be observed in some additional

operating time to, where (t,, t,+t,) is of length kA, can be

estimated

-P[N( tO)-N( t,) ]=n(t,)( { Le-t (l-e-AkA)} (3.19)
1 -e -at,

A Bayesian methodology is discussed in the appendix. This

method attempts to utilize past experience from software

projects having similar characteristics as the software in

question. If the distributions of X and A are known from

experience then this information can be useful in estimating

the parameters i and A.
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B. BOOTSTRAP

Bootstrapping was used to obtain the confidence limits for

, , and E[N(to)-N(t.)] - [AN (to)]. This technique takes

into account the sampling uncertainties in the estimates by

removing the errors in the standard approximation (Dalal et

al, 1989) and (Efron, 1985). To obtain the estimates of the

sampling variability of A, i, and E[N(to)-N(t,)]=t[A(to)]

proceed as follows. The probability that a count occurs in

the jth period is conditional on N(t,)=n(t,) :

P{n . ,Nj=nIN.+N2+ . .. +N=n(t) (3.20a)

,HTl n(t t) i k1 "
( (3.20b)

n, !

where EkX=l-e - jA. From this the probability that a count falls

in the jth interval is

Pi (3.21)

Uniform (0,1) random numbers were generated, where the

k=l,2, . . ,n(t.); Uk is the kth random number. If P(,)'UsP, then

a count is added to r. The simulated nj's were then used to

re-estimate A, i, and t.[AN(to)]; these are the bootstrap

values. This process was repeated 1000 times to get a range

of values for s, i, and k[AN(t.)]. To create a 90W confidence

limit of the estimate E[AN(to)] the 1000 bootstrap estimates
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of k [AN(t.)I were ordered and the values of the 50th and 950th

quantiles were found. These are quoted as the 90% confidence

region (fE[N(t 0 )] 5, E[AN(t 0 )],)-

C. RESULTS

The estimates for the parameters were obtained using three

different A values and three different t, values. The value

t, was selected such that t, + t, - time of last observed fault

to occur; this allows for comparison of the predicted expected

number of faults to occur with the observed data. The data

provided in Tables 1 through 6 are the 90% confidence interval

obtained by the bootstrap. The most difficult aspect of this

thesis research was obtaining appropriate test data. The

data that I received from various sources was unacceptable for

various reasons: no testing history, severity of faults not

listed, no milestone events listed (i.e. one data set covered

10 years but no indication of modifications to the software),

non-software errors listed with software errors, description

of errors could not be interpreted (which may have eliminated

some of the problems mentioned above). The underlying cause

of this is that organizations that I contacted for data do not

use any systematic method for determining software

reliability. A "warm fuzzy feeling" for the software seems to

be the current methcd used to judge the reliability of the

software. This feeling gets warmer and fuzzier as deadlines

draw closer. The data sets used in the analysis of the model
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were obtained from a technical report on other software

reliability models (Abdalla et. al., 1986). The data was

given as time (CPU) between failures. The results of the

bootstrap for Data Set 1 are given in Tables 1-3; the

graphical results (Dalal, 1990) are depicted in Figures 1-3.

The results of the bootstrap for Data Set 2 are given in

Tables 4-6; the graphical results (Dalal, 1990) are depicted

in Figures 4-5.

D. USE OF RESULTS

Suppose a time t, has been spent testing the software, and

n(t,) faults were found. The n(t,) faults can be broken up

into ;'s, the number of faults in each period j of size A (En,

= n(t,)). This information can be used to estimate the

parameters A and X, and a point estimate of the mean or

expected number of faults to appear in the time interval (t.,

t,+to). Operational testing of the system will require some

time to. Bootstrapping can now be done to assess the sampling

uncertainty in the estimate of the expected number of faults

to appear in (t,, t,+t,). This will be done by quoting

bootstrapped 90V confidence limits. The expected number of

faults predicted to occur can be compared to the requirements

of the system i.e. for some time t, for example; at most F

faults are allowed (suppose F can be specified). If the

predicted expected number of faults is less than the allowable

number of faults then system operational testing might be
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worth the expense at this time. In contrast to this, if the

expected number of faults is greater than the specified number

of faults then system operational testing should be postponed.

Testing should continue in the lab, at the developmental level

until t, and n(t,) are large enough that the expected number of

faults for the required operational time meets specification.

A more conservative approach is to replace the estimate of

the mean number of faults by the upper confidence limit of the

mean number of faults. Such a conservative approach is

recommended.

If there are no specifications the individual responsible

for scheduling system operational testing will have to make a

subjective decision. Is the expected number of faults to

occur in (t,, t,+t,) small enough to warrant spending the money

to carry out system operational testing, or should this

testing be postponed until the expected number of faults is

lower. The assumption is that lab testing will continue on

the software, increasing t. and n(t,), but reducing the number

of unfound and uncorrected faults. The more faults found in

lab testing of the software the fewer the number of faults

that are likely to occur in the more costly system operational

testing.
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R. APPLICATION TO TWO DATA SETS

The fitting and error assessment procedure was applied to

two data sets (Abdalla et al, 1986). Figures 1, 2, and 3

refer to Data Set 1; Figures 4, 5, and 6 to Data Set 2.

Figure 1 has a A of 10 CPU minutes with three combinations

of t, and to. If the range of the expected number of faults

for t,=1250, to=250 (2.21 to 6.09) is acceptable the software

manager may choose to schedule operational testing. The same

argument can be made for t,=1000, t,=500. A problem occurs for

t,-500 and to=1000. If the range for the expected number of

faults to occur (4.69 to 22.22) is acceptable the software

manager may choose to schedule operational testing.

Unfortunately, 46 faults occur in (t,, t,+to) . This is

extremely likely to be the result of use of an inappropriate

model (it does seem unlikely that software with as many as 22

mission-critical faults would be viewed as acceptable for

starting operational testing). What can the software manager

do to prevent something like this from occurring? Ideally, as

testing continues, the rate at which faults occur should

decrease (assuming a constant relative rate of testing), with

that rate asymptotically approaching zero as t. becomes large.

The slope of the estimated total expected number of faults

verses test time for Data Set 1 from T=300 to T=500 is m=0.08

(faults/cpu min). Figure 1 depicts this: the rate at which

faults are occurring does not appear to be tapering off. The
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software manager can use this information to support a

decision to go ahead with (or postpone) operational testing.

From T=1000 to T=1500 the slope is 0.028 (faults/cpu min) and

appears to be tapering off. The range of the expected number

of faults to occur in the specified t, accurately reflect what

actually occurred. If the range of the expected number of

faults is acceptable the software manager should go ahead with

operational testing. Figure 2 (A = 20 cpu minutes) and Figure

3 (A = 50 cpu minutes) can be interpreted similarly.

The change in A for both data sets did not have a

significant impact on the range of the expected number of

faults to occur, indicating that the model is somewhat

insensitive to the size of A.

Data Set 2 (Figures 4,5, and 6) shows only a small

indication of the slope decreasing. This is why the

confidence limits of the expected number of faults is so wide.

The software manager can apply the same techniques listed

above to make a decision to schedule (or postpone) operational

testing. The software manager must repeatedly address the

questions: is the rate of occurrence of faults lessening, and

is the range of expected number of faults acceptable to

support operational testing?

A fitted model may indicate a narrowing range of expected

number of faults and slope asymptotically approaching zero,

consequently the software manager schedules operational
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testing. Unfortunately, the results of the operational

testing may be poor i.e. a relatively large number of errors

may occur indicating that more developmental activity and

testing is required to improve the software. For example, the

model predicts n(t,)-22 for Data Set 1 (t4=500, to=1000), but

the number of observed faults that occurred in to was more

than twice the predicted amount, 46. This example illustrates

the relationship between modeling and testing. While a

systematic underestimation indicates flaws in the model,

occasional underestimation simply reinforce that software

reliability models do not take the place of stressing software

within a full system in a real-life operational environment.

The purpose of this thesis is to provide the software manager

with a tool to aid in the decision as to when to initiate

operational testing, not to replace such a test.
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TABLE 1
ESTIMATE OF PARAMETERS FOR DATA SET 1

t,-1250, t 0-250 (CPU MINUTES)
Observed number of bugs in t0 is 6

90% Confidence Interval

A (CPU min) A _ t [N (t.) I

10 5 % 0.00272 134.595 2.21
95 % 0.00176 146.509 5.76

20 5 % 0.00270 134.993 2.32
95 % 0.00174 147.798 6.09

50 5 % 0.00270 135.258 2.25
95 % 0.00175 148.142 5.82

TABLE 2
ESTIMATE OF PARAMETERS FOR DATA SET 1

t,=1000, t0=500 (CPU MINUTES)
Observed number of bugs in t. is 14

90% Confidence Interval

A (CPU min) A f? [N_(t.)]

10 5 % 0.00298 128.701 5.03
95 1 0.00177 147.640 14.73

20 5 % 0.00298 128.969 5.07
95 1 0.00176 148.393 14.81

50 5 1 0.00296 129.828 5.17
95 W 0.00175 150.549 14.96

TABLE 3
ESTIMATE OF PARAMETERS FOR DATA SET 1

t.=500, t 0 =1000 (CPU MINUTES)
Observed number of bugs in t. is 46

90% Confidence Interval
(CPU min) - X E_[N(t_) H

10 5 % 0.00600 95.010 4.69
95 k 0.00327 112.711 20.97

20 5 % 0.00600 95.352 4.70
95 W 0.00326 113.863 21.14

50 5 ! 0.00588 96.859 5.00
95 % 0.00317 118.432 22.22
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TABLE 4
ESTIMATE OF PARAMETERS FOR DATA SET 2

t 5=800, t 0 =300 (CPU SECONDS)
Observed number of bugs in t, is 12

901 Confidence Interval ________

A (CPU min) f9______ _____ _EN (t.) I

10 5 10.00288 82.479 4.75
95 !k 0.00111 126.998 14.69

20 5 P6 0.00288 82.718 4.73
95 1k 0.00111 127.645 14.64

50 5 t 0.00287 83.722 4.78
95 10.00111 131.003 14.66

TABLE 5
ESTIMATE OF PARAMETERS FOR DATA SET 2

t2=600, t 0=500 (CPU SECONDS)
Observed number of bugs in t, is 21

_____________ 90W Confidence Interval________

A (CPU min) ____ ___ [N (t.)I

10 5 10.00298 78.513 10.10
95 1k 0.00068 195.611 37.09

20 5 %- 0.00296 79.189 10.21
95 1k 0.00067 200.950 37.32

50 5 W 0.00298 80.710 10.14
95 % 0.00067 21.307 37.43

TABLE 6
ESTIMATE OF PARAMETERS FOR DATA SET 2

t8=400, t 0=700 (CPU SECONDS)
Observed number of bugs in t, is 37

90% Confidence Interval________

A (CPU min) [N(.

10 5 10.00456 58.950 9.03
95 10.00058 239.964 62.43

20 5 1; 0.00458 59.423 8.96
95 10.00054 263.011 63.88

50 5 10.00446 62.014 9.45
95 1 0.00047 325.387 66.55
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IV. CONCLUSION

Software reliability models are useful tools that managers

of software intensive projects have at their disposal. The

bootstrapping technique will provide the manager a range of

expected number of faults estimated to occur for some

additional operating time. The question is, is the upper

limit of the expected number of faults estimated to occur

acceptable? The potential risks are additional cost for

further testing or late product delivery. The ideal case is

reliable software delivered on time and on budget.

Unfortunately, reality is rarely ideal. The software manager

must decide: is it better to deliver a product on time that

may be considered unreliable by the user and be sent back for

further testing, or to deliver a product late but of

acceptable quality to the user? The purpose of this thesis is

to provide a quantitative tool for the manager who may have to

make such qualitative decisions. The use of software

reliability models is not without associated cost, and risk.

The data must be collected for input to the model.

Recommendations for the type of data that should be collected

are:

0 Operating time between failures (CPU time is the best)
(Musa and Okumoto, 1984).

* Calendar time between failures, although such times may
not accurately reflect the opportunity for faults to
reveal themselves (Musa et al, 1987).
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" Testing history i.e. how many people are involved in the

testing effort.

* How the software was tested

* Intensity of the software testing

* Cost of testing i.e. the cost to find and repair a fault
before and after product delivery.

Without useful data a reliability model has little

practical use. The model presented in this thesis should be

validated using data from several Navy systems.

There are several areas for further research. How

accurate are the predicted confidence limits in this model?

What are the limits of applicability of this model? What

effect do inaccuracies (due to replacing observed data with

hypothesized data in cases where insufficient data is

available) have on the model i.e. how robust is the model?

Further development of other software reliability models

should be pursued. Emphasis should be placed on obtaining

confidence limits in addition to quoting only a point estimate

of the expected number of failures predicted to appear for

some additional testing time. These models should be verified

using data obtained from Navy software intensive systems. It

is infeasible to test every possible branch in a large program

for faults. The software manager needs technical assistance

in identifying where effort and money should be spent to

deliver the best possible product. Will many faults in

portions of the software that are rarely used/reached cause
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more problems for the user than a few faults in frequently

used/reached portions.
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APPENDIX

Software projects may have similar characteristics such as

testing strategies or architecture, so that the information

obtained about the reliability of one software project may be

used to aid in the prediction of the reliability of another

similar, software project. This process can make use of

Bayesian methodology (Dalal and Mallows, 1990), (Farr, 1983).

If prior distributions of X and A are specified then this

information can be used help estimate the parameters X and A;

the posterior for these is

p'Aa(L,jL) =KLOL, p)pA(1)pJ&() ,(a. la)

=Ke -~ i-e Pr)Ln H j- ' e -A 1)n (1-e -p ,& ( .) °p 4 (1) p .4 (P)

(a. ib)

where pR(W) and p,(A) are the prior distributions of X and A

estimated from another software project that has

characteristics similar to the software project currently

being tested. The simplest idea is to integrate out X and

marginalize on L which yields:

pM (11) =Kf e - (1-e"a)A"(t)p( ) d"e"e A-x() (1-eL -A ) -t, (a.2)
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The most convenient choice of pAX) is the (conjugate) Gamma:

PA( =( ) , (a.3)

which when substituted into equation (a.2) yields the density,

p5 (i) =Ke-PAB(t') (1-e-PA) n (to) me-(1-e-Ptq)n(t t) e-, (- a ) -

(a.4a)

=K/e -PAf(t) (I-e -pA) n (ts) 1ezn(t,) P-1dz (a. 4b)
(Of (a+il e-PAJ)n(,)+P

=K//e-'A"(t,) (l-e-PA) n (t,) I1 ~ .)+ (a. 4c)
(a +1-e -pAAJ) ,t)

Using an uninformative prior, a=O, fl=O, and setting x=e-

equation (a.4c) becomes

p,(x) =K'x1(to) (i-x)n(t) 1 (a.5)(a +l-xj) n i +0(a 5

The mode of the density is

-I(x) =In(p,(x) )=ii(t,) inx+n(t,) in(l-x) -(n(t,) +P) n(a+l-x )

(a.6)

Taking the partial derivative of equation (a.7) with respect

to x yields:
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ni(t) -x n(t,)+P x JxJ (a.7)
nit) l-x n(t,) -;+I-xJ

If (Y= - equation (a.7) is the same as equation (3.11), which

gives the MLE.

Suppose m=E[X] and U
2 = Var [ ] in the prior, then o = m/o 2 and

= m(m/a 2). Equation (a.7) is

X n(t,)+m(m/' 2) Jx (t) (a.8)

T-x n (t,) (m/a 2) +l -xJ n(t,)

If X is interpreted as the total number of faults in a

particular software project, then the number of faults is

discrete so a discrete distribution should be used for the

prior, i.e. one could use a Poisson for the prior. However,

it is easier to work with a Gamma distribution. If the Gamma

distribution has same parameters as a Poisson then equation

(a.8) is (since m=a2)

x n (t,) +m jx' n (t) (a. )l-x- n(tT x--nTt7-

It is clear that the variance to mean ratio of the prior has

strong influence on the effect of a prior estimate of the

mean.

One Bayesian approach to estimation is to find the mean

(rather than the mode, or highest point of the posterior as is

essentially done in the likelihood approach) of the
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(approximate) posterior, Osxsl. To obtain an approximate

posterior mode proceed as follows. If J is large 3e is small

provided x>O, so expand in Taylor's series to get

p,(x) =k [x(l-x) "+ ( n+)(xi+j) (l-x) "] (a.10)i+a

where: n=n(t,) and B=h(t,).

Equation (a.10) is a convex combination of two beta densities.

K" can be found by setting the left hand side of (a.ll) = 1.

E(2] = E[e"I] can be found,

x=k** [ r (n+l)r(n+l) E+1 (a.1ii)
r (5+n+1) n+n+l

+ (n) (n+J7+l) r(n+l) n+J7+l
1+a rc (n+J+n+i) n+J+n+l

The approximation to this is

n2! E+1 +n+P (n+J) ! n+J+l
= (n+n) ! n+n+l 1+d (ni+J+n) ! n+J+n+l =efA (a.12)

THi n+P3 (H+J)!
(E+n) ! 1+a (-n+J+n) I

Unfortunately, n=n(t,)=136 for Data Set 1; even with factoring

out i=n(t,), the factorial ratios are on the order of 10" *.

However, it is justifiable to use an approximation to the

factorials to get _ n l+O n +J+l (_.)1

.n+n+l 1+a i+n+J+l n+n+l (a.13)

+ _ P ( E+1 )J
1+4 n+n+l
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The numerical results of equation (a.13) are in Tables Al

through A6 for Data Sets 1 and 2. The graphical results are

shown in Figures Al through A6. The range of the estimated

number of faults to occur in (t,, t,+t,) is much smaller than

that of the bootstrap results discussed in Chapter III. None

of the results (estimated number of faults to occur) using the

Bayesian method contain the observed faults. A possible

explanation for this is inappropriate values for a and ft

(a=0=0). After various projects have been analyzed with

software reliability models, fault distribution may become

more apparent. This information can then be incorporated to

reliability models. I feel that, despite the surprising

initial results, this method does promise to be a useful tool

to the software manager.
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TABLE Al
BAYESIAN ESTIMATE OF PARAMETERS FOR DATA SET 1

t8-1250, t0=250 (CPU MINUTES)
Observed number of bugs in to is 6

90V Confidence Interval

A (CPU min) A x E[N(to)]

10 5 % 0.00339 131.892 1.08
95 % 0.00263 135.028 2.42

20 5 % 0.00340 131.870 1.10
95 % 0.00264 134.992 2.48

50 5 % 0.00339 131.914 1.09
95 W 0.00262 135.103 2.45

TABLE A2
BAYESIAN ESTIMATE OF PARAMETERS FOR DATA SET 1

t,=1000, t0=500 (CPU MINUTES)
Observed number of bugs in t, is 14

90W Confidence Interval

A (CPU min) A _ tE[N(t.)]

10 5 % 0.00399 124.289 1.98
95 1 0.00311 127.719 4.51

20 5 W 0.00399 124.304 1.99
95 W 0.00310 127.768 4.54

50 5 % 0.00398 124.328 2.01
95 W 0.00309 127.828 4.58

TABLE A3
BAYESIAN ESTIMATE OF PARAMETERS FOR DATA SET 1

t,=500, t0=1000 (CPU MINUTES)
Observed number of bugs in t, is 46

901 Confidence Interval

A (CPU min) A i k [N(to)]

10 5 1 0.00808 91.608 1.61
95 1 0.00602 94.660 4.65

20 5 1 0.00809 91.603 1.60
95 1 0.00601 94.697 4.69

50 5 1 0.00797 91.708 1.71
95 V 0.00596 94.805 4.79
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TABLE A4
BAYESIAN ESTIMATE OF PARAMETERS FOR DATA SET 2

ts=800, t 0-300 (CPU SECONDS)
Observed number of bugs in t. is 12

90% Confidence Interval

A (CPU min) k __[N (t o ) ]

10 5 % 0.00464 75.849 1.39
95 0.00340 79.192 3.32

20 5 % 0.00464 75.846 1.39
95 1 0.00340 79.216 3.34

50 5 % 0.00465 75.837 1.38
95 1 0.00339 79.242 3.35

TABLE A5
BAYESIAN ESTIMATE OF PARAMETERS FOR DATA SET 2

t,=600, t,=500 (CPU SECONDS)
Observed number of bugs in t. is 21

90% Confidence Interval

A (CPU min) A, i - [N(t.)

10 5 1 0.00600 66.830 1.74
95 % 0.00429 70.363 4.74

20 5 1 0.00600 66.828 1.74
95 I 0.00429 70.361 4.73

50 5 1 0.00596 66.872 1.78
95 1 0.00429 70.368 4.74

TABLE A6
BAYESIAN ESTIMATE OF PARAMETERS FOR DATA SET 2

t,=400, t 0=700 (CPU SECONDS)
Observed number of bugs in t, is 37

90% Confidence Interval

A (CPU min) A i t[N(to)]

10 5 ! 0.00897 50.391 1.39
95 % 0.00625 53.386 4.33

20 5 % 0.00893 50.416 1.41
95 ' 0.00624 53.397 4.34

50 5 1 0.00891 50.426 1.42
95 %1 0.00622 53.432 4.38
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